In the past few years, edge computing has been revolutionizing how some very familiar services are provided to individuals like you and me, as well as how services are managed within major industries. Try to get your arms around what edge computing is today, and you might just discover that your arms aren’t nearly as long or as flexible as you’d imagined. And Linux is playing a major role in this ever-expanding edge.
One reason why edge computing defies easy definition is that it takes many different forms. As Jaromir Coufal, principal product manager at Red Hat, recently pointed out to me, there is no single edge. Instead, there are lots of edges – depending on what compute features are needed. He suggests that we can think of the edge as something of a continuum of capabilities with the problem being resolved determining where along that particular continuum any edge solution will rest.
Some forms of edge computing include consumer electronics that are used and installed in millions of homes, others that serve tens of thousands of small businesses with operating their facilities, and still others that tie large companies to their remote sites. Key to this elusive definition is the idea that edge computing always involves distributing the workload in such a way that the bulk of the computing work is done remotely from the central core of the business and close to the business problem being addressed.
Done properly, edge computing can provide services that are both faster and more reliable. Applications running on the edge can be more resilient and run considerably faster because their required data resources are local. In addition, data can be processed or analyzed locally, often requiring only periodic transfer of results to central sites.